If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+8z-10=0
a = 1; b = 8; c = -10;
Δ = b2-4ac
Δ = 82-4·1·(-10)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{26}}{2*1}=\frac{-8-2\sqrt{26}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{26}}{2*1}=\frac{-8+2\sqrt{26}}{2} $
| x+7=9-2 | | 17q+17=17 | | 2x+4=5(x+10-3(x+2) | | -4(-1)+2x=6 | | g+4/3=1 | | Y-(-3)=7*x-(-6) | | 21=d/3+6 | | 3=83-5x | | a/6-4=4 | | 8g-4g=20 | | -11f=7(1-2f)+9 | | -2(6n-5=-26 | | X-28+x=140 | | x/8-48=34 | | 4/5a-7=9 | | 6x+2-8x=8-2x+6 | | 4.5x+27=45 | | 10=5(x=8) | | x/8-7=46 | | 5x25=(5x)+(5x) | | 40-24x=2 | | (x+3)(+3)=9 | | X-28-x=140 | | x8-7=46 | | 2/3c+5=17 | | 40x-24=2 | | 2x/2+3=1 | | y+38=0 | | ×2+4;x=5 | | 0.5(4z+7)+9.7=0.7(4z-4) | | 1/2n+19=12 | | 2=3n |